ALAN K. FRITZ, DAVID P. BENZIGER, JAMES E. PETERSON, GEORGE B. PARK, and JEROME EDELSON *

Received November 15, 1982, from the Department of Drug Metabolism, Sterling-Winthrop Research Institute, Rensselaer, NY 12144. Accepted for publication January 26, 1983.

Abstract D The relative bioavailability and pharmacokinetics of a combination product containing pentazocine and acetaminophen were studied in 20 healthy human males. Each subject, in a single-dose three-way crossover design, received two different preparations containing 50 mg of pentazocine (as base) and 1300 mg of acetaminophen either as capsule-shaped tablets or as a solution. Plasma concentrations of pentazocine and acetaminophen were determined from 0.25 to 12 h following oral administration. The plasma data for both compounds in the tablet formulation were described by an open one-compartment body model with first-order absorption. The average $(\pm SD)$ bioavailability of the tablet relative to that of the solution was 85.0 ± 31.1 and $88.6 \pm$ 13.1% for pentazocine and acetaminophen, respectively. The apparent first-order regression-dependent elimination rate constants for pentazocine from the tablet and solution preparations were 0.19 ± 0.08 and 0.20 \pm 0.06 h⁻¹, respectively, while the rate constants for acetaminophen were 0.26 ± 0.03 and 0.25 ± 0.03 h⁻¹ for the tablet and solution preparations, respectively. These rate constants correspond to terminal elimination half-lives of \sim 3.6 h for pentazocine and \sim 2.7 h for acetaminophen.

Keyphrases □ Pentazocine—relative bioavailability, pharmacokinetics, coadministration with acetaminophen □ Acetaminophen—relative bioavailability, pharmacokinetics, coadministration with pentazocine □ Bioavailability—relative, coadministered pentazocine and acetaminophen, pharmacokinetics □ Pharmacokinetics—coadministered pentazocine and acetaminophen, relative bioavailability

Pentazocine, a weak narcotic antagonist, is a potent analgesic in humans. The analgesic efficacy of both oral (1, 2) and parenteral (3-8) formulations of pentazocine is well documented. Acetaminophen is commonly used as a mild analgesic and antipyretic (9, 10). Both pentazocine and acetaminophen have low incidences of adverse side effects at therapeutic dosages (3, 9, 10).

Since pentazocine is thought to act centrally and acetaminophen acts primarily peripherally, the simple additive effect of a narcotic antagonist and an antipyretic-analgesic given together may be substantially greater than the analgesia obtained from each component separately (11, 12). In our investigation, the bioavailability and pharmacokinetic parameters of pentazocine and acetaminophen were determined in human subjects following administration of two different preparations of pentazocine combined with acetaminophen.

EXPERIMENTAL

Subjects—The subjects were 20 healthy male volunteers, ranging in age from 19 to 33 years and in weight from 53 to 104 kg. No subject had a clinical history or laboratory findings that were suggestive of renal, hepatic, or cardiac dysfunction. Appropriate institutional review and approval were obtained.

Drug Administration and Sampling—Each subject received two different preparations of pentazocine and acetaminophen in a single dose according to a randomized three-way crossover design. One dose was two capsule-shaped tablets¹, each containing 25 mg of pentazocine base and 650 mg of acetaminophen, and the other dose was a solution containing 50 mg of pentazocine base and 1300 mg of acetaminophen (prepared in-

house). For the third dose, one-half of the subjects received a repeat dose of the solution and the other half of the subjects received a repeat dose of the tablets. There was a 1-week washout interval between medications. Blood samples were collected by venipuncture prior to drug administration and at 0.25, 0.50, 0.75, 1, 2, 4, 6, 7 and 12 h after treatment; potassium oxalate was used as the anticoagulant. All subjects were fasted for at least 8 h before treatment and 3 h afterwards. Blood samples were centrifuged, and the plasma was separated and frozen until it was as sayed.

Analytical Methods—Pentazocine plasma concentrations were determined using a minor modification of the RIA procedure (13) developed in these laboratories; toluene was used for the extraction in place of benzene. The minimum quantifiable level of the assay was estimated as the concentration whose lower 95% confidence limit just encompassed zero and was ~0.4 ng/mL. Blind analyses of plasma samples spiked with pentazocine over the range of 0 and 0.4 to 100 ng/mL revealed a mean intraassay variation coefficient of 8.2% (n = 18) and a mean interassay coefficient of variation of 11.6% (n = 3).

Plasma concentrations of acetaminophen were determined by the HPLC method reported by Horwitz and Jatlow (14), with the following modifications. Plasma was extracted with 7 mL of diethyl ether instead of 5 mL. The residue remaining after evaporation of the solvent was dissolved in 200 μ L of the mobile phase, and 50 μ L were injected onto a 3.9-mm i.d. \times 30-cm phenyl column² using a solvent system of 7% acetonitrile in 0.1 M KH₂PO₄ (v/v) adjusted to pH 2.4 with phosphoric acid. The flow rate was increased to 2.0 mL/min. The mean quantifiable level for acetaminophen was estimated by linear regression of the peak-height ratios as the concentration whose lower 80% confidence limit just encompassed zero (15) and was between 0.02 and 0.06 μ g/0.5 mL. Blind analyses of acetaminophen standards prepared with human control plasma over the range of 0 and 0.1 to $15 \,\mu g/0.5 \,mL$ yielded an intraassay coefficient of variation (precision) of $\pm 4.9\%$ (n = 2). The accuracy of the assay, defined as the mean percent difference from a nominal value, ranged from -7.5 to 3.0% (n = 18).

Pharmacokinetic Calculations—Pharmacokinetic parameters for pentazocine and acetaminophen were derived by analysis of the plasma concentration data by means of a weighted nonlinear regression procedure (NLIN) using the Marquardt algorithm (16). The plasma concentrations were weighted as the squares of their reciprocals (17, 18). Where appropriate, results are expressed as the mean $\pm SD$.

The plasma data obtained for pentazocine (tablet and solution) and acetaminophen (tablet) was fitted to an open one-compartment body model with first-order absorption and was described by the following:

$$C = A[e^{-k_{e}(t-t_{0})} - e^{-k_{a}(t-t_{0})}]$$
(Eq. 1)

where C is the plasma concentration at time, t, t_0 is the lag time (before absorption begins), A is a constant, and k_a and k_e are apparent first-order rate constants for absorption and elimination, respectively. Since the absorption of acetaminophen in solution is very rapid, the data from the analysis of the acetaminophen solution dose was fit to a one-compartment open model assuming instantaneous absorption (intravenous model) by means of a weighted regression analysis as above, and was described by the following:

$$C = B(e^{-k_0 t}) \tag{Eq. 2}$$

where B is a constant and the other terms are defined above.

The apparent volume of distribution (uncorrected for bioavailability), Vd/F, which relates the plasma concentration to the total amount of drug in the body, was calculated by the use of the following:

$$Vd/F = \frac{\text{Dose} \cdot k_a}{A(k_a - k_e)}$$
 (Eq. 3)

¹ Talacen; Winthrop Laboratories, New York, N.Y.

² µ-Bondapak CN; Waters Associates, Milford, Mass.

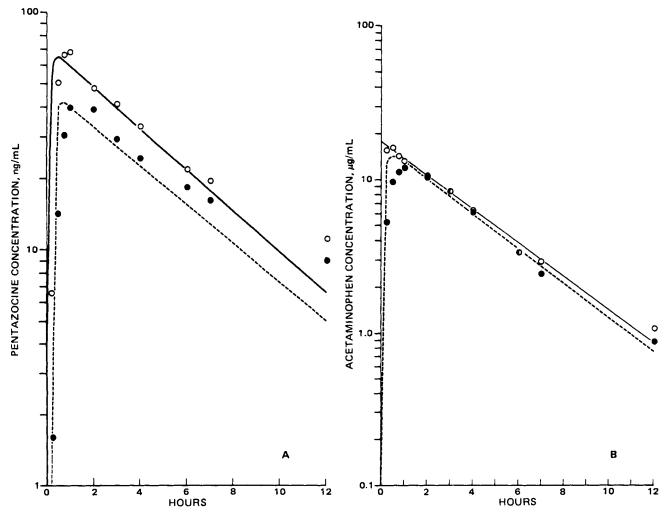


Figure 1-Mean plasma concentrations of pentazocine (A) and acetaminophen (B) in 20 human volunteers after oral administration of either two tablets (•) or a solution (•) containing 50 mg of pentazocine and 1300 mg of acetaminophen. The lines represent the respective model-dependent curves derived from the mean pharmacokinetic parameters.

$$Vd/F = \frac{\text{Dose}}{C_0}$$
 (Eq. 4)

first-order terminal elimination rate constant; k_t was estimated by linear regression on the natural logarithms of the observed plasma concentration from t_{\max} to the last data point.

where F is the fraction of the administered dose which is available to the systemic circulation; the other terms are defined above. The apparent total plasma clearance (CL_p) relates to drug availability (F) and was calculated from:

$$\frac{CL_{\rm p}}{F} = \frac{\rm Dose}{\rm AUC_0^{\circ}} \tag{Eq. 5}$$

The total area under the plasma concentration versus time curve (AUC_0^{∞}) for each subject was determined from the following:

$$AUC_0^{\infty} = \frac{A(k_a - k_e)}{k_a k_e}$$
(Eq. 6)

$$AUC_0^{\infty} = \frac{F \cdot \text{Dose}}{Vd \cdot k_e}$$
(Eq. 7)

In addition to the regression-dependent parameters (defined above). the plasma concentration data were analyzed with respect to the following regression-independent parameters: the maximum observed plasma concentration (C_{max}^{obs}), the time at which the maximum plasma concentration was observed (t_{max}^{obs}), and AUC₁². The latter was calculated by the trapezoidal rule, including all of the data for the study period. For those subjects who had detectable concentrations of pentazocine or acetaminophen in the last sample examined, the AUC was extrapolated to infinite time by use of the following:

$$AUC_0^{\infty} = AUC_0^{12} + \frac{C_p}{k_1}$$
 (Eq. 8)

where C_p was the pentazocine or acetaminophen concentration observed in the last measurable sample taken and k_t is the estimated apparent

The regression-independent volume of distribution (uncorrected for bioavailability), Vd/F, was determined by the following equation:

$$Vd/F = \frac{\text{Dose}}{k_1 \cdot \text{AUC}_0^{\infty}}$$
 (Eq. 9)

The bioavailability of the tablet doses relative to that of the solution doses was determined from the ratio of their respective extrapolated AUC values:

Relative bioavailability =
$$\frac{AUC_0^{\circ} \text{ (tablet)}}{AUC_0^{\circ} \text{ (solution)}} \times 100$$
 (Eq. 10)

RESULTS

Pentazocine-The plasma levels of pentazocine for each subject declined exponentially with time and were best fit with an open one-compartment body model with first-order absorption. The mean plasma concentrations are shown in Fig. 1A. The mean apparent first-order elimination rates for the tablet and solution were 0.19 \pm 0.08 and 0.20 \pm $0.06 h^{-1}$, respectively, which corresponds to a half-life of ~3.6 h for both the tablet and solution preparations. Results are shown in Tables I and II, respectively.

The apparent volume of distribution showed considerable variation between individuals for both preparations. The mean apparent Vd/F for the tablet was 1614 L, with a range of 495-4906 L, and the solution had a mean apparent Vd/F of 1177 L, with a range of 243-2865 L. Plasma clearance (CL_p) and the first-order absorption rate (k_a) demonstrated considerable intersubject variation. The mean AUC_0^{∞} values for the tablet

Table I—Pharmacokinetic Parameters Derived from Pentazocine Plasma Data from Subjects Receiving Tablets Containing Pentazocine and Acetaminophen

	Model Independent						Regression Dependent							
		Cobs max,		$CL_{\rm p}/F$,	AUC ¹² ,		Α,				Vd/F,	CL_{p}/F ,	AUC₀,	
Subject	t_{\max}^{obs} , h	ng/mL	Vd/F, L	L-h ⁻¹	ng•h/mL	k_{t}, h^{-1}	ng/mL	$k_{\rm a}, {\rm h}^{-1}$	k_{e} , h ⁻¹	<i>t</i> ₀ , h	L	L•h ^{−1}	ng•h/mL	
101	2.0	86	645	148	306	0.23	68.3	1.24	0.21	0.24	879	183	273	
101	1.0	35	1302	235	184	0.18	39.8	4.51	0.19	0.46	1311	244	205	
102	2.0	94	549	27.5	821	0.05	79.1	52.7	0.03	0.25	633	19.8	2528	
102	2.0	162	426	34.1	866	0.08	63.7	2.77	0.07	0.48	495	34.9	1432	
103	2.0	21	2140	342	121	0.16	27.2	1.10	0.17	0.39	2165	360	139	
103	0.75	41	1502	301	150	0.20	32.9	63.8	0.20	0.50	1525	301	166	
104	1.5	24	1754	420	110	0.24	29.4	2.45	0.24	0.19	1887	459	109	
104	1.0	62	926	222	208	0.24	55.3	1.25	0.24	0.24	1114	263	190 91.9	
105	0.75	20	2591	521	86	0.20	20.8	2.51	0.21	0.24	2615	544	91.9	
105	1.0	32	2088	481	95	0.23	21.3	52.9	0.23	0.47	2359	542	92.3	
201	1.0	61	1129	237	188	0.21	39.3	2.32	0.19	0.48	1385	266	188	
201	1.0	91	829	208	226	0.25	47.9	2.36	0.22	0.23	1152	256	195	
202	0.5	52	1038	467	107	0.45	50.6	53.6	0.48	0.25	996	476	105	
202	0.75	55	924	278	173	0.30	49.8	2.44	0.30	0.06	1144	342	146	
203	7.0	38	740	118	316	0.16	25.1	52.8	0.02	0.49	1992	38.5	1300	
203	1.0	62	963	202	218	0.21	45.4	6.43	0.21	0.49	1138	235	213	
204	3.0	9.0	4386	526	70	0.12	12.2	1.25	0.11	a	4498	510	213 98.1	
204	0.75	8.0	5275	735	57	0.14	10.7	3.39	0.16	0.34	4906	780	64.1	
205	3.0	63	764	99.4	357	0.13	61.4	1.27	0.14	0.48	918	133	376	
205	3.0	45	824	140	304	0.17	63.5	1.51	0.17	0.47	889	153	327	
301	1.0	25	1812	382	119	0.21	30.4	1.64	0.21	0.16	1894	406	123	
302	1.0	38	1321	238	182	0.18	41.4	4.36	0.19	0.43	1263	244	205	
303	1.0	121	448	49.3	688	0.11	107	1.53	0.11	0.24	503	55.9	895	
304	2.0	28	1544	340	134	0.22	33.2	1.85	0.22	0.24	1711	382	131	
305	1.0	61	1019	214	208	0.21	50.8	60.5	0.24	0.25	989	234	214	
402	2.0	27	1600	305	144	0.19	33.9	1.42	0.19	0.42	1698	314	159 138	
403	2.5	18	2154	345	122	0.16	28.1	1.31	0.18	0.46	2059	362	138	
404	0.75	19	2796	336	114	0.12	17.9	59.5	0.12	0.48	2800	340	147	
405	2.0	68	617	148	315	0.24	93.5	1.56	0.24	0.21	633	154	324	
406	4.0	35	952	162	252	0.17	88.8	0.55	0.20	0.44	877	171	292	
Mean	1.74	50.0	1502	275	238	0.19	45.6	14.9	0.19	0.35	1614	293	362	
$\pm SD$	1.32	34.3	1105	164	211	0.07	24.2	23.5	0.08	0.13	1040	174	526	

^a No meaningful value; not included in the mean.

and solution preparations were 362 ± 526 and 404 ± 474 ng·h/mL, respectively. The calculated bioavailability of pentazocine in the tablet relative to the solution demonstrated considerable intrasubject variation, as well as significant interindividual variability, and ranged from 37.0

to 216% with a mean value of 85.0 \pm 31.1%. Individual AUC $_0^{\circ}$ values and relative bioavailability data are presented in Table III.

The observed regression-independent parameters are in reasonable agreement with those estimated from the open one-compartment body

Table II—Pharmacokinetic Parameters Derived from Pentazocine Plasma Data from Subjects Receiving a Solution Containing Pentazocine and Acetaminophen

		Model Independent						Regression Dependent						
		Cobs max,		$CL_{\rm p}/F$,	AUC ₀ ¹² ,		<i>A</i> ,				Vd/F,	CL_{p}/F ,	AUC ₀ ,	
Subject	t max, h	ng/mL	Vd/F, L	L•h ^{−1}	ng-h/mL	k_{t}, h^{-1}	ng/mL_	k_{a} , h ⁻¹	k_{e} , h^{-1}	<i>t</i> ₀ , h	L	L-h ⁻¹	ng•h/mL	
101	0.62	89	658	112	382	0.17	74.7	54.1	0.17	0.25	672	115	434	
102	1.0	166	229	27	1055	0.12	99.8	5.39	0.04	0.24	505	21	2431	
103	2.5	20	1921	327	129	0.17	31.5	1.29	0.19	0.45	1854	345	145	
104	1.0	28	1749	333	131	0.19	28.7	2.31	0.19	0.23	1895	352	142	
105	0.50	37	1869	485	96	0.26	24.6	56.0	0.26	0.25	2041	523	95.6	
201	3.0	32	1082	216	202	0.20	48.8	1.27	0.19	0.23	1207	232	216	
202	0.75	85	820	221	214	0.27	52.7	9.16	0.26	0.21	976	250	200	
203	0.75	36	1279	255	174	0.20	44.0	3.98	0.28	0.20	1224	247	144	
204	0.75	16	3173	413	95	0.13	18.3	2.03	0.15	0.20	2941	435	115	
205	0.75	127	665	80	443	0.12	72.9	6.67	0.11	0.21	889	76	654	
301	0.75	38	1279	320	148	0.25	38.0	56.9	0.25	0.25	1320	329	152	
301	0.75	56	1348	300	155	0.22	34.0	56.6	0.21	0.48	1475	311	161	
302	0.75	46	914	182	248	0.20	65.1	1.96	0.22	0.16	864	18 9	265	
302	0.75	. 99	638	153	301	0.24	72.4	8.95	0.23	0.24	709	162	309	
303	2.0	120	374	49	790	0.13	145	1.50	0.13	0.25	379	50	1000	
303	0.75	203	254	38	1033	0.15	186	2.74	0.15	0.24	285	44	1136	
304	0.50	83	1243	300	153	0.24	32.9	72.1	0.22	0.24	1524	340	147	
304	0.87	53	1073	258	180	0.24	42.1	51.7	0.23	0.24	1192	273	183	
305	1.0	58	855	171	262	0.20	55.2	17.5	0.19	0.23	917	177	283	
305	1.0	131	549	143	327	0.26	94.3	52.4	0.31	0.25	533	166	301	
402	2.5	34	1142	251	179	0.22	47.2	1.33	0.21	0.16	1260	267	187	
402	1.0	54	1066	224	200	0.21	45.3	4.09	0.21	0.23	1163	238	210	
403	0.75	35	1567	312	142	0.20	32.7	49.5	0.21	0.25	1535	318	157	
403	0.50	42	1582	316	140	0.20	30.2	6 3.2	0.19	0.25	1661	320	156	
404	2.0	26	1691	287	148	0.17	31.2	1.64	0.17	0.24	1787	303	165	
404	0.75	21	2797	391	102	0.14	18.2	3.29	0.14	0.24	2865	397	126	
405	0.75	162	275	66	707	0.24	187	5.36	0.25	0.21	280	69	727	
405	1.0	219	236	61	768	0.26	222	3.78	0.27	0.23	243	65	772	
406	1.0	49	792	127	335	0.16	79.7	1.07	0.19	0.20	761	142	351	
406	0.75	214	285	60	744	0.21	147	61.5	0.20	0.25	342	67	746	
Mean	1.06	79.3	1140	216	333	0.20	70.0	22.0	0.20	0.20	1177	227	404	
$\pm SD$	0.65	61.1	721	123	283	0.04	54.4	25.9	0.06	0.06	128	129	464	

		Pentazocine		Acetaminophen					
	AUC ₀ ,	ng•h/mL	Relative	AUC ₀ ,	µg•h/mL	Relative			
Subject	Tablet	Solution	Bioavailability	Tablet	Solution	Bioavailability			
101	337	447	75.4	51.2	67.5	75.8			
101	213		47.8	56.4		83.6			
102	1821	1822	100	49.2	53.4	92.1			
102	1466	_	80.5	56.9		107 ·			
103	146	153	95.4	88.5	89.9	98.5			
103	166		109	93.4		104			
104	118	150	78.9	53.6	55.3	96.9			
104	225		120	60.9		110			
105	96	103	93.8	45.7	54.1	84.4			
105	104		101	51.2		94.7			
201	211	231	91.3	71.6	75.8	94.6			
201	241		104	93.0		123			
202	107	226	47.4	65.8	74.4	88.4			
202	180	<u> </u>	79.8	59.5		80.0			
203	422	196	216	61.4	66.7	92.1			
203	248		127	66.7		100			
204	95	122	78.2	56.7	59.5	95.3			
204	68		55.7	60.8		102			
205	503	626	80.3	40.6	66.2	61.0			
205	357		57.0	41.2		62.2			
301	131	156	84.0	63.2	67.4	93.6			
301		169	77.9		73.9	85.4			
302	210	274	76.9	57.2	68.9	83.1			
302		327	64.4		83.6	68.5			
303	1015	1028	98.7	54.1	60.3	89.7			
303		1313	77.3		64.0	84.5			
304	147	168	87.8	53.3	64.0	83.2			
304		194	75.8		65.8	81.0			
305	234	292	79.9	61.6	62.8	98.1			
305		350	66.8	-	68.6	89.8			
402	164	199	82.7	54.9	60.5	90.8			
402		223	73.7		63.7	86.2			
403	145	160	90.8	61.8	60.0	103			
403		158	91.8		64.7	95.6			
404	149	174	85.7	73.8	85.8	86.0			
404		128	117		86.4	85.4			
405	338	757	44.6	78.7	102	77.0			
405		814	41.4		103	76.2			
406	309	394	78.4	57.1	68.8	83.0			
406	_	834	37.0		97.3	58.7			
Mean	332	406	85.0	61.3	77.1	88.6			
$\pm SD$	401	404	31.1	13.3	13.6	13.1			
<u> </u>	401	*2U*2	01.1						

model with first-order absorption. The C_{\max} values for the tablet and solution preparations were 50 ± 34.3 and 79.3 ± 61.1 ng/mL, respectively, and their respective t_{\max} values occurred at 1.74 ± 1.32 and 1.06 ± 0.65 h. The regression-independent $t_{1/2}$ values for the tablet and solution preparation were identical to the regression-dependent $t_{1/2}$ values.

Acetaminophen—As seen in Fig. 1B, the plasma levels of acetaminophen in volunteers receiving the tablet declined exponentially with time, suggesting that an open one-compartment body model with firstorder absorption would be appropriate. The plasma levels of acetaminophen in volunteers receiving the solution declined exponentially and were best described by a one-compartment body model assuming instantaneous absorption (intravenous model). The mean apparent firstorder elimination rates for the tablet and solution were 0.26 ± 0.03 and 0.25 ± 0.03 h⁻¹, respectively, which corresponds to a $t_{1/2}$ of 2.7 h. The pharmacokinetic parameters are shown in Tables IV and V.

The mean apparent volume of distribution (Vd/F) for the tablet and solution were 90.3 \pm 17.2 and 76.5 \pm 14.7 L, respectively. Clearance of the tablet varied from 14.6 to 37.9 L·h⁻¹, while the plasma clearance of the solution ranged from 12.4 to 24.6 L·h⁻¹. The mean AUC₀^{\circ} values for the tablet and solution formulation were 57.5 \pm 13.0 and 72.0 \pm 14.4 μ g·h/mL, respectively.

The observed, regression-independent parameters are in reasonable agreement with those calculated from the regression-dependent parameters. The mean apparent first-order terminal elimination rate constants were 0.25 ± 0.04 and 0.24 ± 0.03 h⁻¹, respectively, for the tablet and solution preparations. The $C_{\rm max}^{\rm obs}$ for the tablet data was $13.6 \pm 3.7 \mu g/mL$, and the respective $t_{\rm max}^{\rm obs}$ occurred at 0.95 ± 0.64 h.

The calculated bioavailability of the tablet relative to the solution ranged from 58.7 to 123%, with a mean value of 88.6 \pm 13.1%. Individual AUC₀^o values and relative bioavailability are presented in Table III. The regression-independent AUC₀^o for the solution data was in close agreement to that of the AUC₀^o calculated from the regression-dependent parameters. This suggests that the model which assumed instantaneous absorption was appropriate for the available data.

DISCUSSION

Pentazocine-Pharmacokinetic parameters for each subject were estimated after computer-fitting of the data by a weighted iterative nonlinear least-squares regression technique. The plasma data from each subject was best fit by an open one-compartment body model with first-order absorption. Attempts to fit the data from each subject to an open two-compartment body model with first-order absorption yielded residual sum-of-squares values significantly greater than the comparable values for an open one-compartment body model. The half-lives for the capsule-shaped tablet and solution data, 3.65 and 3.46 h, respectively, are similar to those reported by Ehrnebo et al. (19): 3.38 ± 1.18 and 2.95 \pm 0.57 h, following intravenous and oral administration, respectively. The present values are in very close agreement with the mean half-life of 3.83 \pm 0.47 h reported by Neal et al. (20) for four normal subjects. The elimination half-lives for the urinary excretion rate of intact pentazocine for a period of 24 h ranged from 2.0 to 5.5 h (21, 22), which are in accordance with our plasma values. The mean apparent Vd/F for the tablet and solution preparations were 1610 and 1110 L, respectively, or, dividing by the mean body weight, 21.4 and 14.7 L/kg. These values suggest that pentazocine may be bound or partition favorably into tissues. Ehrnebo et al. (19) and studies conducted in our laboratories³ have demonstrated that first-pass metabolism of pentazocine after oral administration was \sim 80%. Taking this into account, one obtains mean estimates of 222 and 322 L for the tablet and solution treatments, which are in reasonable agreement with the range of 251-548 L reported by Ehrnebo et al. (19)

³ Unpublished data.

Table IV—Pharmacokinetic Parameters Derived from Acetaminophen Plasma Data from Subjects Receiving Tablet Containing Pentazocine and Acetaminophen

Cobs. max, g/mL Vd/F, 12 90.8 14 82.3 15 94.4 12 104 12 77.3	25.4	, AUC ¹² , ng·h/mL 48.8 54.1	$\frac{k_{t}, h^{-1}}{0.28}$	$\frac{A}{\mu g/mL}$	k _s , h ⁻¹	k _e , h ^{−1}	t ₀ , h	Vd/F, L	CL_{p}/F ,	
g/mL Vd/F, 12 90.8 14 82.3 15 94.4 12 104	$ \begin{array}{c} L \cdot h^{-1} \\ 25.4 \\ 23.0 \end{array} $	ng•h/mL 48.8	0.28		k_{a}, h^{-1}	k_{e}, h^{-1}	t_0, \mathbf{h}	т		
14 82.3 15 94.4 12 104	23.0			10.0			• • •	L	L•h ^{−i}	ng•h/mL
15 94.4 12 104		54.1		16.2	2.09	0.30	0.18	93.6	27.8	46.7
12 104	26.4		0.28	15.3	49.0	0.29	0.25	85.4	25.0	52.0
		47.2	0.28	12.2	а	0.27	0.18	106	29.0	44.9
12 77.3	22.8	52.5	0.22	12.8	2.66	0.22	0.15	111	23.9	54.3
	14.7	78.0	0.19	18.6	1.73	0.19	0.17	78.5	14.9	87.5
15 81.9	13.9	80.5	0.17	23.3	1.46	0.24	0.11	67.0	16.3	79.9
15 80.9	24.2	51.7	0.30	16.6	6.70	0.31	0.02	82.3	25.2	51.5
17 76.3	21.4	58.2	0.28	18.0	3.33	0.28	0.22	78.8	22.2	58.7
11 105	28.4	43.5	0.27	11.8	43.9	0.28	0.18	111	30.7	42.3
14 94.0	25.4	48.6	0.27	13.5	52.6	0.27	0.22	96.8	26.3	49.5
13 82.5	18.2	65.7	0.22	18.9	1.67	0.24	0.22	80.2	19.0	68.3
24 51.7	14.0	88.6	0.27	26.0	5.37	0.28	0.18	52.6	14.7	88.7
16 75.9	19.8	63.2	0.26	17.4	15.3	0.27	<u> </u>	75.9	20.2	64.4
15 72.8	21.8	57.4	0.30	18.6	2.98	0.29	0.21	77.2	22.1	58.9
17 75.6	21.2	58.4	0.28	14.0	8.45	0.28	0.23	95.7	26.4	49.2
17 74.9	19.5	62.9	0.26	17.7	3.64	0.26	0.19	79.0	20.7	62.9
12 95.5	22.9	52.6	0.24	14.3	7.81	0.28	0.21	94.6	26.8	48.6
12 93.0		56.6	0.23	13.7	8.74	0.23	0.22	97.2	22.3	58.2
10 110	32.0	38.6	0.29	13.1	1.29	0.30	0.23	128	37.9	34.3
7.6 105	31.6	39.4	0.30	13.6	1.54	0.28	0.22	117	33.2	39.2
11 103	20.6	56.2	0.20	13.1	3.36	0.21	0.23	106	22.4	58.1
12 75.7	22.7	55.1	0.30	20.4	1.58	0.30	0.14	78.7	23.8	54.5
10 109	24.0	50.2	0.22	11.9	5.10	0.22	<u> </u>	114	24.9	52.2
11 97.6		50.6	0.25	14.0	5.22	0.26	0.12	97.5	25.2	51.6
24 70.3		59.4	0.30	17.6	a	0.31	0.25	73.9	22.6	57.6
10 103	23.7	50.9	0.23	13.7	3.04	0.24	0.21	103	24.5	53.1
			0.22	17.8	0.96	0.24	0.15	97.8	23.7	54.9
					2.84	0.24	0.22	75.9	18.0	72.3
15 66.1	16.5	75.1	0.25	20.9	4.11	0.26	a	66.3	17.1	76.1
		52.8	0.23	21.7	0.80	0.26	0.16	89.2	14.6	89.2
		57.4	0.25	16.5	8.83	0.26	0.19	90.3	23.4	57.5
13.6 87.4		11.6	0.04	3.6	14.4	0.03	0.05	17.2	5.4	13.0
15 9	76.5 66.1 99.0 6 87.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

^a No meaningful value; not included in the mean.

and similar to those of Neal et al. (20), 342 ± 188 L, following intravenous administration of 0.8 mg/kg.

The regression-independent bioavailability of the tablet relative to that of the solution was $85.0 \pm 31.1\%$. The AUC⁵ values varied consid-

erably among these volunteers by a factor of 28 and 15 for the tablet and solution, respectively. The data obtained from the solution did not show the same degree of intrasubject variation as that of the tablet. Others have observed the same interindividual variation (19, 21). In general, it has

Table V—Pharmacokinetic Parameters Derived from Acetominophen Plasma Data from Subjects Receiving a Solution Containing Pentazocine and Acetaminophen

	<u>_</u> ,,,	Mod	el Independ	lent			Regression Dependent					
			Vd/F,	CL_{p}/F ,	AUC ₀ ¹²		<i>C</i> ₀ ,		Vd/F,	CL_{p}/F ,	AUC₀,	
Subject	t_{\max}^{obs} , h	$C_{\max}^{\mathrm{obs}},\mu\mathrm{g/mL}$	L	L•h ^{−1}	µg•h/mL	k_{t}, h^{-1}	$\mu g/mL$	k_{e}, h^{-1}	L	L-h-1	µg∙h/mL	
101	0.50	19	71.4	19.3	64.4	0.27	18.6	0.28	69.9	19.4	67.1	
102	0.50	16	87.0	24.3	51.2	0.28	15.0	0.28	86.4	24.0	54.2	
103	0.75	15	65.7	14.5	84.4	0.22	20.0	0.22	64. 9	14.4	90.6	
104	0.50	13	87.1	23.5	52.6	0.27	15.3	0.28	85.1	23.5	55.4	
105	0.25	22	89.0	24.0	51.1	0.27	14.7	0.28	88.3	24.6	52.8	
201	1.0	15	71.5	17.2	70.8	0.24	19.6	0.25	66.3	16.4	79.5	
202	0.25	20	62.4	17.5	71.5	0.28	21.1	0.28	61.6	17.1	75.9	
203	0.50	19	72.2	19.5	63.5	0.27	18.8	0.28	69.0	19.3	67.3	
204	0.75	11	99.4	21.8	55.0	0.22	13.2	0.22	98.7	21.4	60.7	
205	0.25	28	89.3	19.6	58.4	0.22	17.3	0.26	75.2	19.3	67.5	
301	0.25	16	83.8	19.3	62.7	0.23	16.1	0.24	80.9	19.3	67.5	
301	0.50	22	79.9	17.6	66.6	0.22	17.6	0.23	74.0	17.2	75.8	
302	0.25	18	72.5	18.9	65.5	0.26	17.2	0.26	75.6	19.5	66.6	
302	0.25	24	55.6	15.6	80.2	0.28	23.9	0.28	54.4	15.2	85.4	
303	0.50	15	86.2	21.6	56.7	0.25	15.5	0.25	83.3	21.0	61.8	
303	0.25	18	84.6	20.3	59.8	0.24	15.9	0.24	82.0	20.0	65.0	
304	0.25	20	81.2	20.3	60.1	0.25	16.0	0.25	81.3	20.2	64.2	
304	0.25	28	76.0	19.8	62.1	0.26	16.1	0.25	81.0	20.1	64.8	
305	0.25	22	69.0	20.7	60.8	0.30	19.3	0.30	67.3	20.2	64.5	
305	0.25	32	65.4	20.0	65.6	0.29	19.7	0.29	66.1	19.2	67.7	
402	0.25	11	97.7	21.5	55.9	0.22	12.0	0.21	108	22.5	57.8	
402	0.25	17	81.7	20.4	59.7	0.25	16.5	0.26	78.8	20.1	64.6	
403	0.50	10	108	21.7	54.5	0.20	11.9	0.20	110	22.0	59.2	
403	0.50	15	95.7	20.1	59.5	0.21	14.0	0.21	92.9	19.8	65.8	
404	0.75	16	68.8	15.2	79.5	0.22	19.6	0.22	66.5	14.7	88.7	
404	2.0	16	60.2	15.0	81.6	0.25	21.4	0.23	60.6	14.2	91.6	
405	0.25	22	53.0	12.8	96.3	0.24	24.3	0.24	53.5	12.6	103	
405	0.50	26	50.4	12.6	98.0	0.25	26.3	0.25	49.4	12.4	105	
406	1.0	11	89.9	18.9	63.1	0.21	15.2	0.21	85.6	18.1	71.7	
406	0.50	$\overline{22}$	78.6	13.4	82.0	0.17	16.3	0.16	79.6	13.1	99.1	
Mean	0.49	18.6	76.5	18.8	66.4	0.24	17.6	0.25	76.5	18.6	72.0	
$\pm SD$	0.36	5.5	13.2	3.2	12.5	0.03	3.5	0.03	14.7	3.3	14.4	

been observed that the AUC values vary substantially for drugs with pronounced hepatic clearance, such as nortriptyline (23) and imipramine (24); the data suggest this is also true for pentazocine. In addition, the oral bioavailability of pentazocine was significantly enhanced in patients with cirrhosis of the liver, due to reduction in hepatic clearance (20, 25).

Acetaminophen-The plasma data obtained from the solution was fit to a one-compartment body model assuming instantaneous absorption because the first blood sample obtained, in the majority of the subjects, contained the highest level of acetaminophen, while the data obtained from the tablet treatment was fit to a one-compartment body model with first-order absorption. The half-lives for the tablet and solution, 2.67 and 2.77 h, respectively, are in close agreement with those reported by Lee et al. (26): 2.6 h in both obese and nonobese subjects. Divoll et al. (27) and Rawlins et al. (28) found that the mean half-life was 2.7 and 2.8 h after intravenous administration of 650 mg and 500 mg of acetaminophen, respectively. Others have reported half-lives ranging from 2.24 to 3.0 h (17, 29-34). Sotiropoulus et al. (35), based on urinary elimination of acetaminophen, reported half-lives of 2.77, 3.14, and 4.12 h after oral administration of three different commercial tablets.

The apparent Vd/F of acetaminophen ranged from 52.6 to 128 L for subjects receiving the tablet and from 49.4 to 110 L for subjects receiving the solution. The mean apparent volumes of distribution, when corrected by the mean body weight, were 1.2 and 1.02 L/kg, respectively, for the tablet and solution suggesting that acetaminophen distributes into total body water. Divoll et al. (27) reported a mean value of 1.09 L/kg after intravenous administration of 650 mg of acetaminophen in young human males. As reported by others, the volume of distribution ranged from 0.60 to 1.36 L/kg (9, 18, 27, 29, 30). The regression-independent bioavailability of the tablet relative to that of the solution was $88.6 \pm 13.1\%$.

In summary, the relative bioavailability of pentazocine and acetaminophen in the capsule-shaped tablet formulation proved to be equivalent to that of the solution. In addition, the pharmacokinetic parameters of pentazocine and acetaminophen were not altered after oral administration of the combination of both drugs.

REFERENCES

(1) W. T. Beaver, S. L. Wallenstein, R. W. Houde, and A. Rogers, Clin. Pharmacol. Ther., 9, 582 (1968).

(2) T. G. Kantor, A. Sunshine, E. Laska, M. Meisner, and M. Hopper, Clin. Pharmacol. Ther., 7, 447 (1966).

(3) W. T. Beaver, S. L. Wallenstein, R. W. Houde, and A. Rogers, Clin. Pharmacol. Ther., 7, 740 (1966).

(4) L. S. Cass, W. S. Frederick, and J. V. Teodoro, J. Am. Med. Assoc., 188, 112 (1964).

(5) A. S. Keats and J. Telford, J. Pharmacol. Exp. Ther., 143, 157 (1964).

(6) M. S. Sadove and R. C. Balagot, J. Am. Med. Assoc., 193, 887 (1965).

(7) M. S. Sadove, R. C. Balagot, and F. N. Pecora, J. Am. Med. Assoc., 189, 199 (1964).

(8) V. K. Stoelting, Anesth. Anal., 44, 769 (1965).

(9) B. Ameer and D. J. Greenblatt, Ann. Intern. Med., 87, 202 (1977).

(10) J. Koch-Weser, Med. Intell., 295, 1297 (1976).

(11) W. T. Beaver, Arch. Intern. Med., 141, 293 (1981).

(12) J. F. Calimlim, W. M. Wardell, D. M. Phil, H. T. Davis, L. Lasagna, and A. J. Gillies, Clin. Pharmacol. Ther., 21, 34 (1977).

(13) J. E. Peterson, M. Graham, W. F. Banks, D. P. Benziger, E. A. Rowe, S. Clemans, and J. Edelson, J. Pharm. Sci., 68, 626 (1979).

(14) R. A. Horwitz and P. I. Jatlow, Clin. Chem., 23, 1596 (1977). (15) R. W. Ross and H. Stander, Paper presented at the Princeton

Conference on Applied Statistics, December 1975.

(16) J. T. Helwig and K. A. Council (Eds), "SAS User's Guide," SAS Institute, Raleigh, N.C., 1979, pp. 317-329.

(17) K. S. Albert, A. J. Sedman, and J. G. Wagner, J. Pharmacokinet. Biopharm., 2, 381 (1974).

(18) J. A. Clements and L. F. Prescott, J. Pharm. Pharmacol., 28, 707 (1976).

(19) M. Ehrnebo, L. O. Boreus, and U. Lonroth, Clin. Pharmacol. Ther., 22, 888 (1977).

(20) E. A. Neal, P. J. Meffin, P. B. Gregory, and T. F. Blaschke, Gastroenterology, 77, 96 (1979).

(21) A. H. Beckett, P. Kourounakis, D. P. Vaughan, and M. Mitchard, J. Pharm. Pharmacol., 22 Suppl., 169s (1970).

(22) A. H. Beckett, J. F. Taylor, and P. Kourounakis, J. Pharm. Pharmacol., 22, 123 (1970).

(23) F. Sjoqvist, B. Alexanderson, M. Asberg, L. Bertilsson, O. Borga, B. Hamberger, and D. Tuck, Acta Pharmacol. Toxicol., 29, 255 (1971).

(24) L. F. Gram and J. Christiansen, Clin. Pharmacol. Ther., 17, 555 (1975).

(25) S. M. Pond, T. Tong, N. L. Benowitz, and P. Jacob, Aust. N.Z. J. Med., 10, 515 (1980).

(26) W. H. Lee, W. G. Kramer, and G. E. Granville, J. Clin. Pharmacol., 21, 284 (1981).

(27) M. Divoll, D. R. Abernethy, B. Ameer, and D. J. Greenblatt, Clin. Pharmacol. Ther., 31, 151 (1982).

(28) M. D. Rawlins, D. B. Henderson, and A. R. Hijab, Eur. J. Clin. Pharmacol., 11, 283 (1977). (29) A. P. Douglas, R. L. Savage, and M. D. Rawlins, Eur. J. Phar-

macol., 13, 209 (1978).

(30) S. Holt, R. C. Heading, J. A. Clements, F. Tothill, and L. F. Prescott, Clin. Pharmacol. Ther., 30, 232 (1981).

(31) R. P. Miller, R. J. Roberts, and L. J. Fischer, Clin. Pharmacol. Ther., 19, 284 (1976).

(32) E. Nelson and T. Morioka, J. Pharm. Sci., 52, 864 (1963).

(33) L. F. Prescott, P. Roscoe, N. Wright, and S. S. Brown, Lancet i, 519 (1971).

(34) R. A. Seymour and M. D. Rawlins, Eur. J. Clin. Pharmacol., 20, 215 (1981).

(35) J. B. Sotiropoulus, T. Deutsch, and F. M. Plakogiannis, J. Pharm. Sci., 70, 422 (1981).

ACKNOWLEDGMENTS

The authors are grateful to Cintest, Inc., Cincinnati, Ohio, for medicating the subjects and collecting the plasma samples, and to M. Graham, M. Brown, P. Kullberg, G. Freeman, and R. Brown for technical assistance.